
Selection of Best Software Engineering Practices:  

A Multi-Criteria Decision Making Approach 

Gil Hernández-Ledesma1, Erik G. Ramos2, Carlos A. Fernández-y-Fernández2 ,  

Jorge R. Aguilar-Cisneros3, Juan J. Rosas-Sumano4, Luis A. Morales-Ignacio4 

1 Universidad Tecnológica de la Mixteca, Ingeniería en Computación, Huajuapan de León,  

Oaxaca, México 

2 Universidad Tecnológica de la Mixteca, Instituto de Computación, Huajuapan de León,  

Oaxaca, México 

3 Universidad Popular del Estado de Puebla, Decanato de Ingenierías,  

Puebla, México 

4 Clínica de rehabilitación integral física y mental (CRIFYM),  

Oaxaca, México 

hernandezlg1f@gmail.com, {erik,caff}@mixteco.utm.mx, jorge.aguilar@upaep.mx,  

jujorosas@hotmail.com, alfmoring@gmail.com 

Abstract. The development of an application based on a set of best software 

engineering practices involves first their selection.  This process may become 

complex due to the variables involved. This paper presents an Operations 

Research approach for the selection of best software engineering practices for the 

development of applications or computational systems considering a series of 

alternatives and selection criteria. Initially, 31 practices were considered, 19 were 

selected with 11 criteria using the Multi Criteria Decision Making (or MCDM) 

method called PAPRIKA (Potentially all pairwise rankings of all possible 

alternatives). This approach was applied to the development of an application 

that will help patients with painful hemiplegic shoulder. 

Keywords: MCDM, best practices. 

1 Introduction 

The complexity and diversity of tasks involved in software development have resulted 

in methodologies that have changed according to the needs of systems and industry, the 

technologies involved, and scientific advances. Likewise, with the creation of 

development methodologies, best software engineering practices have emerged, which 

can be integrated into a methodology or applied jointly, indicating the steps to be taken 

in development. 

47

ISSN 1870-4069

Research in Computing Science 136 (2017)pp. 47–60; rec. 2017-08-29; acc. 2017-09-19

mailto:hernandezlg1f@gmail.com
mailto:jorge.aguilar@upaep.mx
mailto:jujorosas@hotmail.com
mailto:alfmoring@gmail.co


In this paper, a MCDM method called PAPRIKA [1] was used for the selection of 

best software engineering practices for the development of the first component of the 

Hippocrates project (an application that will help patients with painful hemiplegic 

shoulder). An evaluation of 31 practices was done and 19 were selected using 11 

evaluation criteria: C1) It can be developed efficiently by a single person, C2) Enables 

agile development, C3) Provides customer interaction, C4) Allows the management of 

progress indicators, C5) Allows early deployment, C6) Reduces risk, C7) Allows the 

development of a modular system, C8) Allows work in short times, C9) Allows low 

cost of fault repair, C10) Allows continuous testing and C11) Development team 

experience. Each criterion received one of the 3 possible values: bad, regular and good. 

According to the evaluations, the most important criterion was C1, followed by criteria 

C9, C5 and C10. 

Hippocrates will be a system to help control people's eating habits, emphasizing their 

physical activity and their rehabilitation. It includes a smart assistant planner with 

detailed dieting habits for a patient with high cholesterol and triglyceride problems. 

Hippocrates components will be: A module that works with Microsoft Kinect, which 

will help patients with painful hemiplegic shoulder. This paper only describes the 

process of selecting practices for this module. A web module that will help patients 

keep an accurate record of what they consume and the physical activity they perform 

thus facilitating and improving the analysis of the nutritionist. This module will be 

complemented with a component that encourages you to perform physical exercise. A 

smart assistant which helps create diets for people with cholesterol and triglyceride 

problems. The remainder of the paper is organized as follows: In section two, three and 

four important works and concepts related MCDM and some examples of the best 

practices in software engineering [2] are presented; in section five, important aspects 

of the selection of the best practices for the development of an application that will help 

patients with painful hemiplegic shoulder are described; in section six, the proposed 

practice; in section seven the results of applying a MCDM method to the problem raised 

in this article. Finally, the section eight report the conclusions and propose some future 

work. 

2 Basic Concepts of Multi-Criteria Decision Making 

Multi-Criteria Decision Making (or MCDM) is an area of Operations Research, which 

is considered a quantitative method (these use numerical information to reach 

conclusions). MCDM helps to select among several alternatives from the proposed 

criteria for a given problem. MCDM tries to differentiate between existing alternatives 

and provides mechanisms to select the solution that best suits your problem. There is a 

great variety of MCDM methods, which can be classified in deterministic, stochastic, 

or Fuzzy. 

Analytical Hierarchy Process (or AHP), is a method where the decision problems 

can be modeled with an AHP hierarchy in levels, where the attributes can be objective 

or subjective. This method compares alternatives through pair-wise comparisons and 

numerical evaluations [3]. In [4] the authors show the inconsistencies in the AHP 

48

Gil Hernández-Ledesma, Erik G. Ramos, Carlos A. Fernández-y-Fernández, et al.

Research in Computing Science 136 (2017) ISSN 1870-4069



model, so they proposed a new version of the AHP in which the relative value of each 

alternative was divided by the maximum of these relative values. 

Technique for Order Preferences by Similarity to Ideal Solutions (or TOPSIS) is a 

method that uses the Euclidean distance, has problems with the consistency of the 

judgments, but has good results if used with the Fuzzy approach [5].  Potentially all 

pairwise rankings of all possible alternatives (or PAPRIKA) is a patented method and 

implemented in 1000Minds software. The method obtains the best alternatives through 

a series of comparisons among them [1]. 

3 Software Engineering Best Practices 

A best practice in software engineering is a tool, language or methodology that 

represents an improvement in the development of a system or application [2]. Software 

engineering best practices can be classified according to their context: best practices by 

type of software; best practices by size of the application; best practices by activity. 

Some Software Engineering best practices are: 

Requirements 

 Inspections (requirements): This technique helps to find errors in the requirements 

[6]. 

 Product Backlog, Sprint Backlog and User Stories: The Product Backlog is the 

system requirements, this can change throughout the creation of the product.  The 

Sprint Backlog are the tasks of the workers for the sprint. [7] 

 Formal requirements analysis and use cases: The former is based on the creation of 

requirements documents with a formal notation [8] and “a use case is a unit of 

functionality expressed as a transaction among actors and the subject” [9].   

Analysis and Design 

 Unified Modeling Language (or UML) is a language that allows you to specify the 

elements of a software [9]. There are several UML diagrams, for example: UML 

class diagrams, UML Object diagrams, UML Interaction diagrams, UML State 

diagrams and UML Activity diagrams. 

 Test-first development: This approach develops first the test cases [10]. 

 Simple Design: It is a design that lacks unnecessary complex elements [11]. 

 High-level languages: These kinds of languages have a high abstraction of computer 

logic. 

 Object-oriented (OO) development: The object-oriented paradigm is an abstraction 

of programming in which everything is seen as objects and methods [2]. 

Development Organization  

 Work organized in Sprints:  A Sprint is an iteration in the development of the system 

or application. [7] 

 Work organized in Cascade steps: This is a phase in the software lifecycle. 

49

Selection of Best Software Engineering Practices: A Multi-Criteria Decision Making Approach

Research in Computing Science 136 (2017)ISSN 1870-4069



 Work organized in Spiral loops: A cycle of the Spiral is an iteration in which each 

of the activities planned for the development of the system are developed over and 

over again. [12] 

Planning 

 Planning Poker: This is a technique that uses the numbers of the poker cards to 

estimate the effort. There is a variation in which the numbers of the Fibonacci 

sequence are used. [13] [14] 

 COCOMO II: This is a mathematical estimation model. 

Evaluation and Control 

 Gantt and PERT chart: These are charts that model the tasks in a process. [10] 

 Burndown chart: This chart shows the estimated time of effort required to complete 

the project. [7] 

 Formal progress reports (weekly): Continuous reports of the development of the 

system. [2] 

Testing 

 Formal test plans and templates: This practice uses templates with common test 

cases for software functions [15]. 

 Automated unit testing: These are tests that require minimal human intervention. 

[11] 

 Regression test: Check that some improvement did not affect the rest of the program. 

 Incremental testing Top-down: Strategy in which, the top components of the 

application are tested first [16].  

 Incremental testing Bottom-up: Strategy in which, the terminal components of the 

application are tested first. [16] 

 Usability test:  This practice evaluates the interfaces with real users. [16]   

Practices Additionally Considered 

 Continuous integration: The code is integrated and tested several times a day.  

 On-site customer: The customer is a fundamental part of the work team. [11]   

 Prototyping: This consists of the creation of prototypes throughout the development 

of the system. 

 Automated documentation tools: The use of these types of tools saves time and effort 

for the developers. 

 Refactoring: This consists of making improvements to the design of the existing 

code. [11] 

4 Related Work 

The MCDM has been used in software engineering for the prioritization of 

requirements in [17] using the AHP method for this activity. It has also been used for 

50

Gil Hernández-Ledesma, Erik G. Ramos, Carlos A. Fernández-y-Fernández, et al.

Research in Computing Science 136 (2017) ISSN 1870-4069



the selection of a suitable software lifecycle model (SLCM), in this work [18] a fuzzy 

multi-criteria decision making approach is proposed.  

In [19], the authors propose the selection of the best-fit agile software development 

methodology for small and medium enterprises based on the multi-criteria method 

SMARTER with a three-point scale. On the other hand, in [20] test techniques are 

selected using the AHP and TOPSIS methods. 

5 Methodology 

The application of the PAPRIKA method included in the 1000 minds software was 

proposed for the selection of best software engineering practices for the creation of 

projects that do not conform to a software development methodology. The PAPRIKA 

method was applied for the selection of best software engineering practices for the first 

component of our Hippocrates project (application that will help patients with painful 

hemiplegic shoulder). These are the needs that must cover the practices to be selected. 

Requirements 

 Partial definition of requirements: The requirements do not have to be fully defined 

before beginning the development of the system. 

 Flexibility of requirements: The requirements may change throughout the 

development of the system. 

Control, Evaluation, Effort Estimation and Duration of Tasks 

 A method of estimating and controlling tasks is necessary. 

 Tools and metrics are needed to visualize the development progress of the 

application. 

Testing 

 Test methods are executable by a single person and verify that the changes do not 

introduce new defects. 

Additional Conditions 

 No development teams are required: The component to develop is part of an 

individual project, so a developer will assume all roles. 

 Continuous customer feedback: The client must be involved in all the application 

development because this component will help to provide medical treatment. 

In the first place, we hoped that the development would have an agile approach, 

which explains why some characteristics of this approach were sought and taken. In the 

Requirements section, a process of requirements such as the Cascade Methodology was 

considered deficient, since the development process is continuous and new functional 

requirements can be discovered as tests or prototypes are performed. Consequently, 

51

Selection of Best Software Engineering Practices: A Multi-Criteria Decision Making Approach

Research in Computing Science 136 (2017)ISSN 1870-4069



different practices were chosen that allowed the flexibility of requirements and their 

partial definition. 

For the section control, evaluation, effort estimation and duration of tasks, an effort 

estimation method was determined necessary, because this would allow the analysis 

and evaluation of the progress of the development of the system. In the case of testing, 

it was once again considered the main limitation of the system (this is an individual 

project), so techniques such as test automation are quite necessary. Hippocrates is a 

medical system and it was necessary for the clients and users (doctors) to be closely 

linked with its development, so that they could carry out the necessary medical 

validation. The practices described in the section "Software Engineering best practices" 

were evaluated because these fulfilled certain application needs. 

The criteria considered were as follows: C1) It can be developed efficiently by a 

single person, C2) Enables agile development, C3) Provides customer interaction,  C4) 

Allows the management of progress indicators, C5) Allows early deployment, C6) 

Reduces risk,  C7) Allows the development of a modular system, C8) Allows work in 

short times,  C9) Allows low cost of fault repair, C10) Allows continuous testing and 

C11) Development team experience. 

An agile approach to system development was considered, due to its advantages 

[21]. Criterion C1 was created because this is an individual project and responds to one 

of the additional conditions already mentioned. Criterion C2 is used for practices with 

an origin in agile development to obtain a better score. Criterion C3 helped to select 

practices that encourage constant client intervention in development with the intention 

of validating the aspects related to medicine in the system. The criteria C4, C6, C7 and 

C9, respond entirely to the needs of control, evaluation, effort estimation and duration 

of tasks, since they are criteria that will help to obtain the best practices to diminish 

risks and to recover from errors in the development. 

Table 1. Practice: Selection of best practices for software development using the  

MCDM method: PAPRIKA. 

 Criteria   

Alternative 
C

1 

C

2 

C

3 

C

4 

C

5 

C

6 

C

7 

C

8 

C

9 

C 

10 

C 

11 
Rank Score 

Incremental testing Bottom-up G G G G G G G G G G R 1st 99.8 

Incremental testing Top-down G G G G G G G G G G R 1st 99.8 

Usability test R G G G G G G G G G G 3rd 94.6 

Continuous integration G G - G G G G G G G G 4th 94.4 

Planning poker G G - G G G G G G G G 4th 94.4 

Planning poker: Fibonacci G G - G G G G G G G G 4th 94.4 

Burndown chart G G - G G G G G G G G 4th 94.4 

Simple Design G G - G G G G G G G R 8th 94.3 

Automated unit testing G - G G G G G G G G G 9th 93.3 

Refactoring G G - G G G G R G G R 10th 93.1 

Prototyping R R G G G G G R G G G 11th 91.1 

PERT chart G G G G - G G G G G G 12th 89.6 

Work organized in Sprints R G - G G G G G G G G 13th 89.1 

Regression test R G - G G G G R G G G 14th 88.0 

52

Gil Hernández-Ledesma, Erik G. Ramos, Carlos A. Fernández-y-Fernández, et al.

Research in Computing Science 136 (2017) ISSN 1870-4069



 Criteria   

Alternative 
C

1 

C

2 

C

3 

C

4 

C

5 

C

6 

C

7 

C

8 

C

9 

C 

10 

C 

11 
Rank Score 

Product Backlog, Sprint 

Backlog and User Stories 
R G G G G G G G G - G 15th 84.3 

Gantt chart G G - G - G G G G G G 16th 84.1 

Automated documentation tools G G - R G G G G G - G 17th 83.0 

UML Activity diagrams G R - - G G G G G - G 18th 72.0 

UML class diagrams G R - - G G G G G - G 18th 72.0 

UML Interaction diagrams G R - - G G G G G - G 18th 72.0 

UML Object diagrams G R - - G G G G G - G 18th 72.0 

UML State diagrams G R - - G G G G G - G 18th 72.0 

Test-first development B R R R G G G R G G B 23rd 71.9 

Formal test plans and templates B R - G R G G R G G R 24th 70.0 

On-site customer - G G - G G - R G G G 25th 67.8 

Inspections (requirements) R R - G B G R R G R B 26th 67.4 

Work organized in Spiral loops B B G G G R G R R G B 27th 62.6 

COCOMO II R R - - - G G G G - G 28th 56.3 

Formal requirements analysis 

and Use cases 
R B G G B R R B G - R 29th 53.9 

Formal progress reports 

(weekly) 
B B - G B G - B G B G 30th 34.3 

Work organized in Cascade 

steps 
B B R G B B G B B B R 31st 27.4 

Criteria C5 and C8 were thought to encourage the selection of agile practices and 

the continuous generation of deliverables. Criterion C10 represents the need presented 

in the testing section. Criterion C11 allowed for the evaluation of the possible learning 

curve in new practices for the developer. This is important because this factor could 

cause variation in the development time. 

6 Proposed Practice: Selection of Best Practices for Software 

Development Using the MCDM Method: PAPRIKA 

Table 1 defines the methodology as a practice, so that it can be replicated by anyone. 

The practice was defined following the Essence specification, a Kernel and Language 

for Software Engineering Methods [22], which is a standard approved by the Object 

Management Group. In particular, the KUALI-BEH Kernel Extension of Essence was 

used, which allows for the definition of practices independently of the technology, size 

and life cycle of the project. 

7 Results 

In this project, 31 different practices for the development of the Hippocrates application 

were evaluated. Table 2 shows the alternatives ranked with each of their qualifications 

for the criteria.  Hyphens (-) indicate that the alternative could not be evaluated for this 

53

Selection of Best Software Engineering Practices: A Multi-Criteria Decision Making Approach

Research in Computing Science 136 (2017)ISSN 1870-4069



criterion, the results generated by PAPRIKA were not affected by the above. The values 

of evaluation of the practices are: Bad (B), Regular (R) and Good (G).  

The criterion C1 has the greatest weight according to the preferences detected by the 

method, the variation of weights for each criterion is shown graphically in Fig. 1a. The 

best rankings were taken as long as they were not focused on the same objectives or 

activities in the development of the application. The list of selected practices (grouped 

by type of activity) is as follows: 

 Requirements: Product Backlog, Sprint Backlog and User Stories. 

 Analysis and design: UML class diagrams, Simple Design, High-level languages and 

Object-oriented (OO) development. 

 Development organization: Work organized in Sprints. 

 Planning: Planning Poker Fibonacci. 

 Evaluation and control: Burndown chart. 

 Testing: Automated unit testing, Regression test, Incremental testing, Bottom-up and 

Usability test. 

 Practices additionally considered: Continuous integration, On-site customer, 

Prototyping, Automated documentation tools and Refactoring. 

Table 2. Practices evaluation for development organization. 

Practice: SelectionBestPracticesForSoftwareDevelopmentUsingPAPRIKA 

Selection of best practices for software development using the MCDM method: PAPRIKA. 

Objective: Select n best practices for software development from a set of practices using the 

MCDM method called PAPRIKA, considering a set of criteria and needs according to the 

application. 

Entry. Conditions: The development team will 

propose a set of m practices that they 

themselves can develop within which n will be 

selected. 

Result. Conditions: The development team will 

have a set of best practices that will fit the needs 

and variables of the project. 

Completion Criteria: 75% of the development team members must agree to the selected practices. 

Guide  

Activity 1. Project leader will meet with the customer and discuss the needs of the application 

which will be listed. 

Input. Conditions: Project leader and customer are in time and place. Output. Work products: 

Application needs list. Competences: The project leader must have knowledge of requirements 

engineering. Measures: None. 

Activity 2. Development team will analyze and propose a set of criteria that reflects the application 

needs and other variables that they consider appropriate, for example: the type and levels of 

development team experience, the soft and hard skills of the developers, the type of approach to 

testing, organization of development, customer interaction, type of progress indicators and all 

those factors relevant to development. 

Input. Work products: Application needs list. Conditions: Development team is in time and place. 

Output. Work products: Criteria list. Competences. The development team must know or have 

experience in several methodologies and best practices of software development. Measures: None. 

Activity 3. The team will propose a set of practices that according to their experience could be 

adjusted to the needs of the project.       

54

Gil Hernández-Ledesma, Erik G. Ramos, Carlos A. Fernández-y-Fernández, et al.

Research in Computing Science 136 (2017) ISSN 1870-4069



Input. Work products: Application needs list. Conditions: Development team is in time and place. 

Output. Work products: Practices list. Competences: The development team must know or have 

experience in several methodologies and best practices of software development. Measures: None. 

Activity 4. Give a rating (Good, Regular or Bad) to each of the practices in each of the criteria. 

Input. Work products: Practice list. Conditions: Development team is in time and place. Output. 

Work products: Practices table with grades. Competences: The development team must know or 

have experience in several methodologies and best practices of software development. Measures: 

None. 

Activity 5. Answer the questions requested by the PAPRIKA method, these will determine the 

preferences of the development team and reflect the needs of the project. 

Input. Work products: Practice table with grades. Output. Work products: Ranking of practices. 

Competences. None. Measures. None. 

Activity 6. Select the best ranked practices.  

Input. Work products: Ranking of practices. Output. Work products: List of selected practices.  

Competences. None. Measures. None. 

The practices with the same total score, the practices that originated in agile 

development (criterion C2) were chosen, due to the advantages of this approach [21]. 

High-level languages and Object-oriented (OO) development practices were also 

adopted without evaluation because the development of applications for Kinect V2 uses 

C#, a high-level language with the OO paradigm. 

 

a) 
 

b) 

 
c) 

Fig. 1. a) Radar chart of criterion weights. The criterion with greater weight (15.9 %) is C1: The 

practice can be efficiently developed by a single person. b) Burndown chart sprint 1: It can be 

observed that for more than half of the sprint, the developer worked slowly but was able to 

complete in time all the activities planned in the sprint. c) Burndown chart sprint 2: It can be seen 

that an overestimation of effort was made as the goals of the sprint were fulfilled two days ahead 

of schedule. The blue line indicates the work to be done and the orange line the remaining ideal 

hours of effort. 

7.1 Case Study: Best Practices Selected and the Development of the 

Application 

The work was organized in sprints; all effort estimates were made using Planning poker 

Fibonacci. Below is a summary of the activities and practices used in each sprint. For 

the evaluation of the progress, tables were used in which the effort was documented. 

From these, the burndown chart of sprint 1 (see Fig. 1b) and sprint 2 (see Fig.1c) were 

generated. 

55

Selection of Best Software Engineering Practices: A Multi-Criteria Decision Making Approach

Research in Computing Science 136 (2017)ISSN 1870-4069



Sprint 1: Four meetings were held with the client to create the user stories and the 

product backlog. The system design was analyzed and later the class diagram and the 

database were modeled. Three components were detected for the application: one that 

controls the therapists, another the patients and another the routines through which 

patients can be given therapy. The technologies with which the system could be 

implemented were analyzed. 

A prototype was developed in C# for usability testing. Fig. 2a shows a screen capture 

of one of the prototype interfaces. A summary of the results of tests is shown below: 

Tests were applied to 5 different users: a physiotherapist, a physician, a psychology 

student with studies in industrial ergonomics, a bachelor's student and a senior citizen. 

Each user was chosen because their studies or condition would provide good feedback 

to the system that focused on senior citizens and physicians. The results revealed that: 

Another method was needed to remove records from patient sections, therapists, and 

routines; the buttons should provide feedback when the user clicks or positions on them 

and the silhouette (see Fig. 2b) showing the therapeutic movements to be performed 

had a low opacity and were difficult to perceive for the senior citizens or patients with 

some disease related to the hemiplegic shoulder, such as diabetes which can affect the 

eyes of those who suffer. 

Table 3. Equivalence classes for “New Exercise” functionality. 

Input Condition Valid 

Equivalence 

Classes 

Invalid Equivalence Classes 

The repeats are longer than 0 digits and 

less than 3  

length: 1-2 digits 

(1v) 

length < 1 digit(1i), 

length > 2 digits (2i) 

Repetitions are a number Only has numbers 

(2v) 

Has different characters 

than numbers (3i) 

The degrees have a length longer than 0 

digits and less than 4 

length: 1-3 digits 

(3v) 

length < 1 digits(4i), length 

> 3 digits (5i) 

Degrees are a number Only has numbers 

(4v) 

Has different characters 

than numbers (6i) 

The name of the routine is composed of 

numbers, letters and blanks 

only has numbers, 

letters and blanks 

(5v) 

has characters other than 

numbers, letters and blanks 

(7i) 

The routine name has a length greater 

than 1 character and less than 201 

characters 

length: 1-200 (6v) length < 1 (8i), length > 200 

Sprint 2: In this sprint, the modules of therapists and routines were developed. 

Incremental testing Bottom-up was used, test cases were developed with Visual Studio 

software and Coded UI Tests. This tool allowed automated testing and regression tests. 

The strategy used includes Logic-Coverage Testing, Equivalence Partitioning and Error 

Guessing; Table 3 shows an example of the equivalence classes for the “New Exercise” 

functionality. These classes represent subsets of possible input values. The following 

notation was adopted: the valid classes are indicated as <Number> v, for example: 1v 

or 3v; while invalid classes are denoted by the letter “i”, <Number> i, for example: 2i 

or 7i. All the code is in a Bitbucket repository with Git and code was integrated into 

56

Gil Hernández-Ledesma, Erik G. Ramos, Carlos A. Fernández-y-Fernández, et al.

Research in Computing Science 136 (2017) ISSN 1870-4069



this repository daily once it passed the tests. The documentation was developed through 

Visual Studio when the methods passed the tests. Refactoring was applied to the middle 

of the sprint and at the end. At this time, the application is still in development. The 

burndown chart was an effective tool which showed the progress of the sprints and the 

project. This progress was in accordance with the estimates of Planning poker. Because 

this practice, the product and sprint backlog, user stories and planning, belong to Scrum, 

problems of compatibility did not arise. 

The creation of test cases with the Incremental Testing Bottom-up and the regression 

test consumed a large part of the development time despite the use of automated unit 

testing. The usability tests with the prototype, provide feedback to the development of 

the project. In this way, errors and peculiarities that could not be described in the 

product backlog were detected. 

With the case study, it was detected that with this approach a “methodology” or 

framework can be created for the development of an application, selecting the practices 

that best fit the characteristics of the system to be developed. The application developed 

in the case study is a medical system and, therefore, a greater validation by the users 

(doctors and patients) is necessary. This is why it is considered convenient to add a 

practice like the acceptance testing. 

 
a) 

 
b) 

Fig. 2. a) Screenshot of the Patient module of the prototype for usability testing. b) Screenshot 

of the routine module (physical rehabilitation) in which it is observed that the silhouette 

indicating the movement is not clearly distinguishable. 

8 Conclusion and Future Work 

A software development can be affected by factors such as the complexity of the system 

and the experience and skills of those involved in the project. When using the best 

software engineering approach, the development may be affected by the number of 

selected practices and the selection criteria. Particularly if the PAPRIKA method is 

used, increasing the number of criteria increases the number of decisions that must be 

entered in the method to generate a result. In the same way, it was determined that the 

need for the practices be compatible.  If this point is not covered, inconsistencies and 

possible errors will be generated. 

57

Selection of Best Software Engineering Practices: A Multi-Criteria Decision Making Approach

Research in Computing Science 136 (2017)ISSN 1870-4069



This work differs from those already published in that in this case only one person 

can intervene in the project. Furthermore, different types of practices are considered to 

be oriented to different activities in the development of a software, not only to the 

testing as in [20]. 

If this method is not used, the developer could choose a methodology like PSP.  

However, works like [23] show that when this methodology is no longer mandatory, 

the developer leaves it. On the other hand, the developer cannot work with an agile 

methodology, such as Scrum or eXtreme Programming, which are based on team 

activities such as: Daily Scrum Meeting or pair programming. However, a methodology 

such as Lean UX or User-Centered Design, require multidisciplinary teams that 

collaborate continuously. 

This is a low-medium complexity project (took 2 Sprints of two weeks each to 

develop a quarter of the system). The creation of this system cannot be guided solely 

by the intuition of the developer, but rather requires a methodology or framework 

because in its absence, there will be no organization for approximately 4 months of 

work. 

This methodology allows you to select software engineering practices and reduce 

the possibility of the developer falling into bad practices such as: not documenting code 

or not fully testing all the features. Furthermore, by using this approach one can adapt 

or "create" a methodology for unusual projects or constraints like time, money, the 

experience of developers, as there will not always be ideal projects and clients who are 

willing to invest money or the time of your staff to perform, for example, continuous 

iterations of prototypes or usability tests. 

The selection of practices from agile methodologies was a success, since these were 

compatible and adaptable to the main limitation of the system (a developer will assume 

all the roles), although some practices were not considered for this reason, for example, 

in a pair programming or Scrum daily meeting. The development times coincided with 

the estimates, the objectives were reached and the expected products were generated. 

In general, the practices helped positively in the development. The only drawback was 

the testing strategy, since the developer did not have any experience in this area, which 

led to this task consuming more time than expected. 

If a Project Leader made this selection of practices, the human factor would be 

involved. This would be an empirical process in which errors might occur because each 

project has different needs, different technologies, different work teams with a certain 

type and levels of experience and hard and soft skills. All of the above factors can result 

in a large number of variables to be considered, which can be easily represented in a 

MCDM method. 

This article uses an approach to create an application development framework based 

on the selection of the best practices that adapt to the circumstances of the teamwork, 

delivery times, the developer’s experience, the tools available and all those criteria that 

the project manager, technical leader or developers consider important. Future work 

would involve using this approach with a greater amount of initial software engineering 

practices, developing an analysis of the compatibility of practices and using other 

methods of MCDM for selection. 

58

Gil Hernández-Ledesma, Erik G. Ramos, Carlos A. Fernández-y-Fernández, et al.

Research in Computing Science 136 (2017) ISSN 1870-4069



References 

1. Hansen, P., Ombler, F.: A new method for scoring additive multi-attribute value models 

using pairwise rankings of alternatives. Journal of Multi-Criteria Decision Analysis, 

15(3-4), pp. 87‒107 (2008) 

2. Jones, C.: Software Engineering Best Practices. 1st edn., McGraw-Hill, Inc., New York, 

NY, USA (2010) 

3. Majumder, M.: Impact of urbanization on water shortage in face of climatic aberrations. 

1st edn., Springer Singapore (2015) 

4. Belton, V., Gear, T.: On a short-coming of Saaty’s method of analytic hierarchies. Omega 

11(3), pp. 228‒230 (1983) 

5. Velasquez, M., Hester, P. T.: An analysis of multi-criteria decision making methods. 

International Journal of Operations Research, 10(2), pp. 56‒66 (2013) 

6. Shull, F., Rus, I., Basili, V.: How perspective-based reading can improve requirements 

inspections. Computer, 33(7), pp. 73‒79 (2000) 

7. Schwaber, K.: Agile project management with Scrum. Microsoft press (2004) 

8. Ciancarini, P., Cimato, S., Mascolo, C.: Engineering formal requirements: An analysis 

and testing method for z documents. Annals of Software Engineering, 3(1), pp. 189‒219 

(1997) 

9. Rumbaugh, J., Jacobson, I., Booch, G.: Unified modeling language reference manual. 2nd 

edn., Pearson Higher Education (2004) 

10. Lethbridge, T., Laganiere, R.: Object-Oriented Software Engineering: Practical Software 

Development Using UML and Java. McGraw-Hill, Inc., 1st edn., New York, NY, USA 

(2002) 

11. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change. 2nd edn., 

Addison-Wesley Professional (2004) 

12. Sommerville, I.: Software Engineering. 8th edn., Addison-Wesley Longman Publishing 

Co., Inc., Boston, MA, USA (2006) 

13. Mahnic, V., Hovelja, T.: On using planning poker for estimating user stories. Journal of 

Systems and Software, 85(9), pp. 2086‒2095 (2012) 

14. Tamrakar, R., Jorgensen, M.: Does the use of Fibonacci numbers in planning poker affect 

effort estimates? In: 16th International Conference on Evaluation & Assessment in 

Software Engineering, EASE 2012, Ciudad Real, Spain, May 14-15, 2012, pp. 228‒232 

(2012) 

15. Nguyen, H. Q.: Testing applications on the Web: Test planning for Internet-based 

systems. John Wiley & Sons (2001) 

16. Myers, G. J., Sandler, C.: The Art of Software Testing. John Wiley & Sons (2004) 

17. Karlsson, J.: Software requirements prioritizing. In: Proceedings of the Second 

International Conference on Requirements Engineering, pp. 110‒116 (1996) 

18. Hicdurmaz, M.: A fuzzy multi criteria decision making approach to software life cycle 

model selection. In: 38th Euromicro Conference on Software Engineering and Advanced 

Applications, pp. 384‒391 (2012) 

19. Silva, V. B. S., Schramm, F., Damasceno, A. C.: A multicriteria approach for selection 

of agile methodologies in software development projects. In: IEEE International 

Conference on Systems, Man, and Cybernetics (SMC), pp. 2056‒2060 (2016) 

20. Victor, M., Upadhyay, N.: Selection of Software Testing Technique: A Multi Criteria 

Decision Making Approach. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 453‒

462 (2011) 

59

Selection of Best Software Engineering Practices: A Multi-Criteria Decision Making Approach

Research in Computing Science 136 (2017)ISSN 1870-4069



21. Petersen, K., Wohlin, C.: A comparison of issues and advantages in agile and incremental 

development between state of the art and an industrial case. Journal of systems and 

software 82(9), 1479‒1490 (2009) 

22. OMG: Essence - kernel and language for software engineering methods. Available at : 

http://www.omg.org/spec/Essence (2015) 

23. Johnson, P. M., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J., Doane, W. E.: 

Beyond the personal software process: Metrics collection and analysis for the differently 

disciplined. In: Proceedings of the 25th international Conference on Software 

Engineering, IEEE Computer Society, pp. 641‒646 (2003) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

Gil Hernández-Ledesma, Erik G. Ramos, Carlos A. Fernández-y-Fernández, et al.

Research in Computing Science 136 (2017) ISSN 1870-4069


